A Role for Runx Transcription Factor Signaling in Dorsal Root Ganglion Sensory Neuron Diversification

نویسندگان

  • Ina Kramer
  • Markus Sigrist
  • Joriene C. de Nooij
  • Ichiro Taniuchi
  • Thomas M. Jessell
  • Silvia Arber
چکیده

Subpopulations of sensory neurons in the dorsal root ganglion (DRG) can be characterized on the basis of sensory modalities that convey distinct peripheral stimuli, but the molecular mechanisms that underlie sensory neuronal diversification remain unclear. Here, we have used genetic manipulations in the mouse embryo to examine how Runx transcription factor signaling controls the acquisition of distinct DRG neuronal subtype identities. Runx3 acts to diversify an Ngn1-independent neuronal cohort by promoting the differentiation of proprioceptive sensory neurons through erosion of TrkB expression in prospective TrkC+ sensory neurons. In contrast, Runx1 controls neuronal diversification within Ngn1-dependent TrkA+ neurons by repression of neuropeptide CGRP expression and controlling the fine pattern of laminar termination in the dorsal spinal cord. Together, our findings suggest that Runx transcription factor signaling plays a key role in sensory neuron diversification.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Neuroprotective Effect of Nepeta menthoides on Axotomized Dorsal Root Ganglion Sensory Neurons in Neonate Rats

Background and Objective: Sensory neurons have critical role in improvement of functional outcome of any neuroprotective strategy. The herbal medicine Nepeta menthoides has been reported to have anti-apoptotic effect on axotomized spinal motoneurons. In the present study, the putative neuroprotective effect of Nepeta menthoides on the axotomized dorsal root ganglion sensory neurons in neonate r...

متن کامل

The transcription factor Runx3 represses the neurotrophin receptor TrkB during lineage commitment of dorsal root ganglion neurons.

Runx3, a Runt domain transcription factor, determines neurotrophin receptor phenotype in dorsal root ganglion (DRG) neurons. Molecular mechanisms by which Runx3 controls distinct neurotrophin receptors are largely unknown. Here, we show that RUNX3 abolished mRNA induction of TRKB expression, and concomitantly altered the neurotrophin response in a differentiating neuroblastoma cell line. In con...

متن کامل

Graded Activity of Transcription Factor Runx3 Specifies the Laminar Termination Pattern of Sensory Axons in the Developing Spinal Cord

Different functional classes of dorsal root ganglion sensory neurons project their axons to distinct target zones within the developing spinal cord. To explore the mechanisms that link sensory neuron subtype identity and axonal projection pattern, we analyzed the roles of Runx and ETS transcription factors in the laminar targeting of sensory afferents. Gain- and loss-of-function studies in chic...

متن کامل

“Runx”ing towards Sensory Differentiation

Somatosensory stimuli are encoded by molecularly and anatomically diverse classes of dorsal root ganglia (DRG) neurons. In this issue of Neuron, three papers demonstrate that the Runx transcription factors, Runx1 and Runx3, respectively regulate the molecular identities and spinal terminations of TrkA+ nociceptive neurons and TrkC+ proprioceptive neurons. These findings emphasize the importance...

متن کامل

Morphological Identification of Cell Death in Dorsal Root Ganglion Neurons Following Peripheral Nerve injury and repair in adult rat

Background: Axotomy causes sensory neuronal loss. Reconnection of proximal and distal nerve ends by surgical repair improves neuronal survival. It is important to know the morphology of primary sensory neurons after the surgical repair of their peripheral processes. Methods: Animals (male Wistar rats) were exposed to models of sciatic nerve transection, direct epineurial suture repair of sciati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuron

دوره 49  شماره 

صفحات  -

تاریخ انتشار 2006